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TURBULENT FLOW IN A BOUNDARY LAYER ON THE INLET 

AND OUTLET SIDES OF A ROTATING CHANNEL 

I. H. Korshin UDC 532.526.4:621.515 

Expressions are obtained for approximately determining the shear stresses on the 
outlet and inlet sides of a rotating channel on the basis of a turbulence energy 
balance equation, A. N. Kolmogorov's hypothesis, and the Monin--Obukhov similitude 
theory. 

In the flow of a fluid in the rotating channels of turbine rotors, body forces are 
created by the rotation and curvature of the channel walls. As an example, Fig. 1 shows 
body forces acting on a particle of fluid on the pressure side of a blade (the outlet side 
of the channel) in a plane impeller in a radial-flow compressor. The x axis is directed 
along the blade surface, the y axis is normal to the surface, and the z axis is parallel to 
the angular velocity vector. It can be seen that in most cases the total body force is 
negative on the pressure side and positive on the suction side of the blade (the inlet side 
of the channel). 

The different directions of the total body forces on the pressure and suction sides 
determines the different character of flow in the turbulent boundary layer. 

We can use Rayleigh's method to evaluate the stability of the flow and take the 
Richardson number as the criterion of stability [i, 2]. The total body force acting in the 
direction of the y axis is equal to (Fig. I) 

F=T-p 2~ui R-- ~2rcos~ , (1) 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 41, No. 6, pp. 977-986, December, 
1981. Original article submitted November i0, 1980. 
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Fig. i. Body forces acting on a particle in a boundary layer 
on the outlet side of a channel between impeller blades. 

Fig. 2. Distribution of dimensionless Monin--Obukhov scale 
and dimensionless dynamic velocity along a rotating channel. 
Theoretical data of the author for a square channel with 58- 

o. 2) change in ~; mm sides, ~ = 40 i/sec: i) change in u,, 
solid lines -- for the outlet side, dashed lines -- for the 
inlet side. Experimental data for u~: 3) inlet side, data 
from [i0]; 4, 5) inlet and outlet sides, respectively, 
author's data. 

where the minus sign in front of the parentheses pertains to the outlet side of the channel 
and the plus sign aenotes the inlet side of channel. The signs in front of u2/R are deter- 
mined by the direction of curvature of the wall. In the simplest case of flow in a radial 
channel, F = ~ 2p~u. 

Analyzing the motion of particles in the boundary layer in the field of the acting total 
body force (variable over the thickness of the boundary layer due to the change in u), with 
random displacements in the direction of the y axis, it can be shown that if the total body 
force is negative the flow will be unstable. Conversely, with a positive direction of the 
body force, the flow in the boundary layer will be stabilized. Let us determine the 
Richardson number, having represented it as the ratio of the work of the buoyancy forces 
(expulsive forces) to the work of the frictional forces [i, 3]. 

With random displacement of a particle by the amount Ay = l', the buoyancy force acting 
in the direction of the y axis will be 

AF'------ 

The second work of this force 

OF OF 
A q - -  1'.  ( 2 )  

ay a 9 

A~ = v ' A F '  = v ' l '  OF - - ,  (3) ay 

where v' is the transverse velocity pulsation. 

Taking the average, we obtain the work of the buoyancy forces with random displacements 

OF 
A~= < lw' > - - ,  (4) 

0U 

where the correlation <l'v'> is the coefficient of turbulent transport [i], which we will 
assume to be equal to K. Then 

aF 
A ~ = K - -  (5) 

og 
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F i g ,  3. " W a l l  l aw"  p r o f i l e s  (a )  and  " v e l o c i t y  
d e f e c t "  p r o f i l e s  (b)  f o r  a r o t a t i n g  s q u a r e  c h a n -  
n e l  w i t h  58-mm s i d e s ,  m = 4 0  1 / s e c .  T h e o r e t i c a l  
data: i) inlet side; 2) outlet side. Experimen- 
tal data: 3, 4) outlet and inlet sides, respec- 
tively, forthe initial section; 5, 6) outlet and 
inlet sides, respectively, for the final section. 

The more rigorous result (4) may be obtained by following E. Richardson's arguments [3]. 
The work of frictional forces in the turbulent boundary layer may be written as follows 

Ou ( Ou i 2 A, = T = oK . (6) - @ ~,--~-y / 

We will determine the Richardson number 

In a gravitational field 

fied medium. 

Ri ~- A ,  OF/Oy 
A2 - -  ( O u / @ )  2-~ " ( 7 )  

d F g a p - -  , and we o b t a i n  t h e  f a m i l i a r  f o r m u l a  f o r  Ri i n  a s t r a t i -  
dy d y  

In several cases the Richardson number is expressed through the Brunt--Weisel frequency 
(buoyancy frequency) [4]: 

R i - -  ( ~ u / O ~ ) 2  , ( 8 )  

which may be determined as 

1 OF 
~ v =  v @ (9) 

Differentiating (i) and using (7), we may obtain the Richardson number for flow in a 
rotating channel of arbitrary form. For the case of flow of an incompressible fluid in a 
radial channel, we obtain 

20) Ri = ~ -  (10)  
Ou/@ 

In order to henceforth avoid differences in sign, we will adopt a positive value of 
for the outlet side of the channel and a negative value for the inlet side. We then write 
the Richardson number in the form 

Ri -- 2 o (ii) 

au/@ 

It can be seen from (Ii) that, in the case of a radial channel being discussed, the 
Richardson number is negative for the outlet side of the channel -- where turbulence is 
intensified -- and positive for the inlet side of the channel -- where the flow is stabilized. 

To further analyze flow, we will write the turbulence energy balance equation in the 
form [i] 

0 [ +  , ] 0 [pbu,z]=(pu~> (Xa Du~) Ou B <PuL"~"~>+<P'U:> +-$P~x~ - -  <p.~u~> ----p~,. (12)  
Ox= Dt Ox~ 
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We will successively determine all of the terms of Eq. (12), expressing them through the 
coefficient of turbulent viscosity K in accordance with the hypothesis of A. N. Kolmogorov. 

Let us examine the first term of the equation, which determines the transport of tur- 
bulent energy by the velocity pulsation and the work of the pressure forces: 

We will use the relations given in [i] for b and ;: 

K 2 • b = , l = (14) 
l ~ Co 

Differentiating b with respect to x and y and assuming I ~ const in a first approximation, 
we obtain 

@ L-gf-jy/ @ u ' 

ob - - 2 (  co 
Ox \ • 9 / Ox 

Let us examine the second term of Eq. (12), determining the transport of turbulent 
energy by the mean velocity. Here, as usual, it is assumed that the transverse mean velocity 
is trivial: 

Ox-- (pu=b) = oK g @ 2u Ox " (16)  

The third term of Eq. (12) gives the work of the buoyancy forces with turbulent dis- 
placements in a compressible fluid [i]. We could use Eq. (5) to determine it, without 
making additional assumptions regarding the relationship between the correlations <pu'>, 
<pv'> and the mean parameters of the flow. However, besides body forces, the third term of 
Eq. (12 ) also contains the derivatives Dua/Dt. We will write the expressions for <pu'> and 
<pv'> in the form [i, 5] 

( p u '  > -- P <p'u" >, ( O r " )  --  P < f r o ' ) - ,  (17)  
YP ?P 

here assuming that 

< p'u'> = p~lbu, < p 'v '>  = p~bu, (18) 

where ~ =0.i-0.01. We could also take an expression of type (13) for <p'u'> and show that 
we would arrive at the same final results as with the use of (18). 

From the equation of motion for a plane rotating channel, we may obtain 

X Du au Dv 
- - - -  J x - - u  - - ,  Y . . . .  2 ~u. (19) 

Dt Ox Dt 

A s s u m i n g  ~1 ~ o 2  i n  a f i r s t  a p p r o x i m a t i o n  and  a l l o w i n g  f o r  (18)  and  ( 1 9 ) ,  we o b t a i n  t h e  t h i r d  
t e r m  o f  Eq.  (12) i n  t h e  fo rm 

, \ - - ~ - y  ] (20)  

Supposing that 
au 

<u'r > = - - K  --, @ (21) 

and ignoring the quantity dv/dy, we have the following expression for the fourth term of 
Eq. (12) : 

�9 OU~ ( O. ~2 (22) <o.;%> ~ -oK\  @ / �9 

We w i l l  w r i t e  t h e  t u r b u l e n c e  e n e r g y  d i s s i p a t i o n  i n  t h e  f o r m  [1] 
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Pet-- Pb3/--2 - PK--3 (23) 
c~l (• 

Using the corrected relations, from balance equation (12) we obtain the following differen- 
tial equation for the coefficient of turbulent viscosity K: 

O 1( 2 OK K 1 a K 2 2 a b u = KoM2~ q- \---~y / • 
@ -  - - 6 -  " oy y , 

(24) 

where ~ =~=x/u -- 3u/3x -- 2m. 

Considering that the mechanism by which the body forces act on the flow in the boundary 
layer of a rotating channel is analogous to the effect of stratification in a gravitational 
field, to further transform Eq. (24) we will use the results of the similitude theory of 
Monin--Obukhov for a stratified medium [i]. This makes it possible to describe all of the 
important characteristics of the turbulent boundary layer by means of universal functions 
dependent on the dimensionless parameter ~: 

where 

= y/L,  (25) 

pu~ (26) L : - - - •  ; 

B is the work of buoyancy forces in the stratified medium. 

Using (i) and (5), we obtain the work of buoyancy forces for the case of flow of an 
incompressible fluid in a rotating channel 

A i ~ K  OF _ 2 p K ( o _ +  u ) Ou (27) 
Og R ag 

Representing the coefficient of turbulent viscosity in the form 
2 u, 

K =  &lOg ' (28) 

and u s i n g  ( 2 7 ) ,  we can --  on t he  b a s i s  o f  Eq. (26) --  o b t a i n  t h e  f o l l o w i n g  e x p r e s s i o n  f o r  
t he  Monin--Obukhov l e n g t h  s c a l e  i n  t he  ca se  o f  f low in  a r o t a t i n g  c h a n n e l :  

L -- u,  (29) 

and obtain the following expression for the dimensionless scale 

= - - . •  , (30) 
u, 

where ~ = ~ i u/R. The coefficient 2 has been omitted for convenience. 

Scale L determined by Eq. (29) is in essence equal to scale H obtained in [i] for the 
planetary boundary layer, turbulent flow in which is determined by the dynamic velocity and 
the Coriolis parameter. 

Let us transform Eq. (24), expressing all of its terms through the dimensionless scale 
Following [I], we will take the following as the expression for the velocity profile 

~U H, 
og xy ~(~) (31) 

and the following linear approximation for ~ (~) 

(~) = 1 + ~ ,  

valid at small ~, where ~ is an empirical coefficient~ 
(30) and (31) we obtain 

Og • 

Having taken ~ = 

(32) 

(u/RiO), from 

(0 

(1 + ~{). (33) 

Allowing for (33), from (28) we obtain 

1285 



o~(i + [~0 " 

Differentiating (34) with respect to x while assuming that u, =u,(x), we write 

(34) 

1 OK 1 + 2 ~ O~ 
- ( 3 5 )  

K Ox ~ ( 1 + ~3~) Ox 
We determine the velocity u by integrating (33) 

u -  1 [in_~__~(~_~)], (36) 
~ ,  ~ ~a 

where ~a corresponds to Ya when u = 0. As Ya, we take [6]: 

b'a = - - - ,  (37) 
t / ,  

where 

: exp 5,5 • ~-, !/9. 

To possibly determine u,, let us henceforth examine the flow on the boundary of a 
viscous sublayer, when y = Yl ({ = ~). We will determine the thickness of the viscous sub- 
layer from the "joining" condition, as given, for example, by Ginsburg [7]. We obtain 

.q~ -- (1 + [~ )  (38)  
~< tl ,  

o r  a p p r o x i m a t e k y  a t  a l = 4 . 8  

12 • (39)  

We will determine the function h using the experimental data in [8], where 1/lo = 1 -- 

for the outlet side of the channel and 1/lo = (l+~Ri) -~ for the inlet side. From (ii), BRi 
(31), and (32), we obtain the Reynolds number in the form 

Ri ....... (40) 

We then have 1/lo =I -- B~ for the outlet side of the channel and 1/lo = (I+B~) -I ~i -- ~{ 
for the inlet side. 

Taking lo =zy for a stationary channel, from (14) we write 

f 
%=Co ~ = Co ( 1 - -  ~ ) .  (41)  

Using the expressions obtained for u/u, and K and their derivatives, Eq. (41), and 
expansions valid for small ~: 

1 + ~  1, ( l + ~ ) 2 N  1-{-2~N1,  (1_--+_-~)r 
from (28) we obtain a differential equation for the scale ~, taken on the boundary of the 
viscous sublayer: 

96ab• l~i d~tdx ) 2+  2ut~l d ~ t d . ~ - + 1 6 ~ 2 ~ l - - 2 ~ b • 1 7 6  (42) 

where H~ =u~/a, ul is the velocity at the boundary of the viscous sublayer. We determine 
the velocity ul from (36)-(38) 

Ui 1 In ~t ,-, 12, dut ~ 12 du, 
u, ~ -  ~ "' dx d 7  (43) 

Differentiating (39) with respect to x, we obtain 

du, _ 1 1 / t i z z y  1 d~t (44) 
dx 2 V ~i ~l dx 

Evaluation of the first term of Eq. (42) shows that it is an order less than the other 
terms, even at large d~/dx. Considering the smallness of M at the boundary of the viscous 
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sublayer, Eq. (42) may be simplified considerably and, with allowance for (43) and (44), 
reduced to an equation with divisible variables. Allowing for the signs of ~ and m, inte- 
gration of this equation at ~b = 1 yields two equations: 

for the outlet side 

] / ~  2• ' ~-------V~[3~ • + 1" 8 [~o~ 30U,o 
(45) 

for the inlet side 

]/~1 + T]/8-~~ ( arctg V8 ~$i• arctg ] Y ~  j = 1 -  , •176 u,0 (46) 

A single  formula gives a ra ther  rough approximation of (45) and (46) 

i 0 = 1 + z2~eAx (47) 
V ~ - u *  - "  30u,o ' 

where ~ =~i/~oi; u~ =u,/u,o; ~oI, U,o pertain to the initial section. 

Having expressed w in the form of w=mu,o, where m is a coefficient, we write (47) thus 

h (48) u~ = I •  - - ,  
dh 

where Ro = (~dh)/W , h =Ax, G = (m~2B)/30. Essentially, the same formula was obtained in [8] 
from analyzing test data on losses in rotating channels. To ensure full agreement, we should 
take G(h/dh) = 1.75, so that we obtain B = 4-5 at h/d h =6-8. This coincides fully with the 
experimental data. 

Figure 2 shows theoretical values of the scales ~ and shear stresses on the outlet 
and inlet sides of a square rotating channel with 58-mm sides ([]58) and a length h = 570 mm 
determined from Eqs. (45), (46) at ~ = 40 i/sec. The figure also shows experimental data 
obtained by the author (shear stresses measured by Preston's method [9]) and data from [I0] 
obtained for a rotating diffuser. The theoretical value of ~ =4. 

Figure 3a gives theoretical and measured "wall law" profiles for a D58 channel. The 
velocity in the boundary layer was measured with three-channel probes patterned after the 
recommendations in [ll]. The experimental unit is described in [12]. Figure 3b shows 
theoretical and measured "velocity defect" profiles. 

The divergence of the theoretical velocity profiles from the measured profiles can evi- 
dently be attributed to the fact that the theoretical data pertains to flow over a plate 
rather than flow in a channel, where there are secondary flows. In particular, a flow 
develops from the inlet to the outlet side of the channel, leading to distortion of the velo- 
city profile. 

Equations (46) and (47) show (see Fig. 2) that u, may drop to zero on the inlet side 
of the channel. This may lead to separation of the flow, as confirmed by numerous experi- 
ments -- especially [i0]. 

NOTATION 

K, coefficient of turbulent viscosity; L, length scale of Monin--Obukhov; H, Mach num- 
ber; Ro, Rossby number; Ri, Richardson number; R, radius of curvature of wall; X, Y, forces 
acting in the flow; a, speed of sound; b, turbulence intensity; Co, coefficient; dh, hydrau- 
lic diameter of channel; l, mixing length; r, current rotation radius; p, pressure; t, time; 
u, v, velocity components along x, y axes; w, mean velocity of flow; a, B, coefficients; y, 
ratio of heat capacities; 8, thickness of boundary layer; ~, turbulence energy dissipation; 
~, dimensionless scale of I~onin--Obukhov; ~], angle between velocity vector of particle and 
circumferential velocity vector; ~, Prandtl--Karman constant~ %, ~, functions of ~; ~, coef- 
ficient of kinematic viscosity; p, density; ~, level of turbulence; ~, angular velocity; 
~BV, Brunt--Weisel frequency. 
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INFLUENCE OF RADIATION ON THE DEGENERATION 

OF ISOTROPIC TURBULENCE IN HIGH-TEMPERATUP~ MEDIA 

I. A. Vatutin, B. A. Kolovandin, 
and O. G. Mart ynenko 

UDC 532.517.45 

It is shown that radiation exerts a distinct influence on the degeneration of 
isotropic turbulence depending on the vortex size in conformity with the for- 
mula obtained for radiant thermal diffusivity. 

Sufficiently many journal articles and monographs are devoted to the investigation of 
radiation interaction with a substance and to questions of the dynamics of a radiating gas. 
However, the interaction between radiation and turbulence during motion of high-temperature 
media has been inadequately studied. Meanwhile, as has been shown in [i, 2], this interac- 
tion is substantial for a number of problems of practical importance. The influence of 
radiation on the structure of degenerating isotropic turbulence in compressible high-tem- 
perature gases is examined below. 

It can be shown [2, 3] that at temperatures to many thousands of degrees the magnitude 
of the total volume density of radiation for not very rarefied media is small compared to 
the volume energy density of the particle thermal motion in the medium. This also refers to 
the so-called radiant pressure which is small compared to the pressure caused by particle 
motion in a medium~nder the conditions mentioned. At the same time, because of the high 
velocity of radiation propagation the radiation energy transfer can be substantially greater 
than the energy transfer during motion of the medium or motion of the particles in the 
medium. We shall later limit ourselves to the case when the equation of state of a ideal 
gas is approximately valid, and the specific heats Cp and c v are separately constant, i.e., 
are independent of the temperature. 

Under the constraints mentioned, the continuity, motion, and energy equations have the 
form [2, 4] 

A. V. Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian 
SSR, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 41, No. 6, pp. 987-995, 
December, 1981. Original article submitted November 12, 1980. 
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